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Marine Distribution of CCC coho salmon 

CCC coho salmon spend the majority of their lives at sea, therefore evaluating marine 

distribution and associated stresses and threats is a necessary component for recovery planning.  

The evaluation is challenging because migration patterns and ecology of coho salmon in the 

marine environment are highly variable and incompletely understood.   

 

Coho salmon occur in the epipelagic zone (top layer of the water column) in the open ocean, at 

observed depths of from about 10 to 25 meters (summarized by Quinn 2005).  Information from 

hatchery releases in the range of the CCC coho salmon ESU, found that most individuals were 

recovered in northern California, followed by southern Oregon, with a small number found in 

Washington state waters (<1 percent).  Based on these data, and assuming a correlation in 

migration patterns between hatchery and wild populations, it appears the majority of adult 

CCC coho salmon are located off of California and Oregon.   Weitkamp and Neely (2002) found 

a high diversity of ocean migration patterns which suggests individuals within a population 

may be widely distributed in the coastal ocean areas. 
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Marine Phase of the coho salmon life cycle 

Two life stages of coho salmon occur in the eastern Pacific Ocean; sub-adults and adults.  These 

life stages occupy different environments and are exposed to different associated stresses and 

threats encountered within those areas.  The sub-adult life stage is defined as individuals 

inhabiting nearshore marine areas, generally near the continental shelf.  The adult life stage is 

defined as individuals occupying the larger offshore marine environment.  Coho salmon utilize 

nearshore areas of the ocean for a number of months before they enter the open ocean, where 

they remain for eighteen months or more before they return to their natal streams as spawners.  

Some coho salmon never move offshore to the open ocean, but instead move north along the 

continental shelf and grow to adulthood in nearshore areas before returning to spawn 

(Sandercock 1991).  Coho salmon survival in the marine environment is largely affected by 

individual attributes, such as body size, growth rate, and ocean entry date; as well as 

environmental conditions, predation and competition (Quinn 2005).  

 

Sub-Adult Life Stage 

CCC coho salmon appear to remain in nearshore habitats close to their watershed of origin for 

the first few months of ocean residency.  A life history study by Shapovalov and Taft (1954) on 

coho salmon in Waddell Creek on the central California coast, showed coho stayed within 150 

kilometers of shore for a few months following ocean entry.  Other studies using recoveries of 

coded-wire tags (CWTs) also indicate coho salmon remain in the region of their natal stream 

during their first summer in the ocean (Fisher and Pearcy 1988).  Residency in natal nearshore 

areas may be linked to smolt density and feeding conditions in those areas and likely varies 

from year to year (Healey 1980).   

 

The first summer and fall at sea critically influences the likelihood of survival to adulthood 

(Hartt 1980; Beamish et al. 2004).  Van Doornik et al (2007) and Beamish and Mahnken (2001) 

correlated the abundance of juveniles caught in September, with adult abundance the following 

year and determined the success of each year-class was largely set during the first summer in 

the ocean.  The close correlation between jack (two-year old male) abundance and adult 
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abundance further indicates the early ocean period is critical to adult salmon abundance, and 

that most mortality occurs after the first summer of ocean residency (Quinn 2005).  Juvenile 

salmon that fail to reach a critical size by the end of their first marine summer do not survive 

the following winter, suggesting that attaining a large size in a short period of time is necessary 

for survival.  Beamish et al. (2004) and Holtby et al. (1990) found a strong link between growth 

and survival, with faster growing coho salmon being more likely to survive the winter than 

slower growing fish, especially in years of low ocean productivity.  Increased growth rates are 

influenced by both genetic disposition (Beamish et al. 2004) and feeding opportunities.  Upon 

ocean entry, juvenile coho primarily feed on marine invertebrates, but transition to larger prey 

(predominantly fish) as they increase in size (Groot and Margolis 1991).  Beamish and Mahnken 

(2001) also found within the first six months of ocean entry, early mortality is influenced by 

predation, and to a lesser degree a physiologically-based mortality.     

  

Adult Life Stage 

Once coho salmon enter the open ocean, they are subject to different food availability, 

environmental conditions, and stressors than present in the nearshore environment.  The 

growth and survival of adult coho is closely linked to marine productivity, which is controlled 

by complex physical and biological processes that are dynamic and vary over space and time.  

Shifts in salmon abundance due to climatic variation can be large and sudden (Beamish et al. 

1999).  Short and long-term cycles in climate (e.g., El Niño/La Niña and the Pacific Decadal 

Oscillation (PDO)) affect adult size, abundance, and distribution at sea, as does inherent year-

to-year variation in environmental conditions not associated with climatic cycles.  

 

Several studies have related ocean conditions specifically to coho salmon production (Cole 

2000), ocean survival (Ryding and Skalski 1999; Koslow et al. 2002), and spatial and temporal 

patterns of survival and body size (Hobday and Boehlert 2001; Wells et al. 2006).  The 

association between survival and climate operate via the availability of nutrients regulating the 

food supply and competition for food (Beamish and Mahnken 2001).  For example, the 1983 El 

Niño resulted in increased adult mortality and decreased average size for Oregon’s returning 
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coho and Chinook salmon.  Juvenile coho salmon entering the ocean in the spring of 1983 had 

low survival rates, resulting in low adult returns in 1985 (Johnson 1988).  Larger-scale decadal 

to multi-decadal events also have been shown to affect ocean productivity and coho salmon 

abundance (Pearcy 1992; Lawson 1993; Hare and Francis 1995; Beamish et al. 1997; Mantua et al. 

1997; Beamish et al. 1999).  Although salmon evolved in this variable environment and are well 

suited to withstand climactic changes, the resiliency of the adult population has been reduced 

by the loss of life history diversity, low population abundance, cohort loss, and fragmentation 

of the spatial population structure.  Changes in the freshwater environment have further 

adversely affected the ability of coho salmon to respond to the natural variability in ocean 

conditions. 

 

Marine Survival 

As noted above, marine survival and successful return as adults to spawn in natal streams is 

critically dependent on the first few months at sea (Peterman 1992; Unwin and Glova 1997; 

Ryding and Skalski 1999; Koslow et al. 2002).  In a detailed study of Puget Sound hatchery coho 

salmon, Matthews and Buckley (1976), estimated 13 percent survival during the first six months 

at sea; and after twelve months survival was estimated at nine percent.  The survival rate 

during the second year at sea was 99 percent. 

 

Marine environmental conditions are also a major determinant in adult returns (Bradford 1995; 

Logerwell et al. 2003; Quinn 2005).  In general, coho salmon marine survival is about 10 percent 

(Bradford 1995), although there is a wide range in survival rates (from <1 percent to about 21 

percent) depending upon population location and ocean conditions (Beamish et al. 2000; Quinn 

2005)1.  Changes in marine survival rates often have large impacts on adult returns (Beamish et 

al. 2000; Logerwell et al. 2003).  Recent data from across the range of coho salmon on the coast of 

California and Oregon reveal a 73 percent decline in returning adults in 2007/08 compared to 

                                                      

1 Few data exist for coho salmon from California.  Most marine survival data reported above are from Oregon, Washington, and 

Canadian coho populations.  NMFS assumes marine survival rates for CCC coho salmon will be similar. 
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the same cohort in 2004/05 (MacFarlane et al. 2008).  The Wells Ocean Productivity Index, a 

measure of Central California ocean productivity, predicted poor conditions during the spring 

and summer of 2006, when juvenile coho from the 2004/05 cohort entered the ocean 

(MacFarlane et al. 2008).  However, strong upwelling in the spring of 2007 may have resulted in 

better ocean conditions for the 2007 coho salmon cohort. 

 

Stresses 

Major stresses identified which potentially affect coho salmon marine survival include: (1) 

reduced quantity and/or quality of food resources; and (2) reduced genetic and life history 

diversity.  Although poorly understood, the complex physical and biological processes 

determining feeding opportunities have a large influence on the growth and survival of coho at 

sea, especially in the first six months of ocean residency.  What we do know is that the life 

history plasticity and genetic diversity of coho salmon entering the ocean environment has been 

dramatically decreased.  The loss of diversity has reduced the growth opportunities, the 

survival of populations, and the overall resiliency of the ESU.  Predation and competition can 

also influence the size of the population in certain circumstances.  An analysis of stresses 

affecting coho salmon at sea is summarized by life stage below.  

 

Reduced quantity or quality of food 

Oceanographic condition (e.g., upwelling rates, sea-surface temperatures, etc.) is the major factor 

influencing salmonid food quantity and quality in the marine environment.  The first few 

months in the ocean are critical for sub-adult coho salmon survival.  As previously discussed, 

sub-adult fish must quickly grow to a large size prior to their first winter in the ocean or be 

subject to high mortality, thus survival is highly correlated with the amount and type of food 

available. 

 

The availability and type of food resources in the nearshore environment is dependent upon the 

location and magnitude of upwelling and its influences on ocean productivity.  Upwelling is 
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caused by northerly winds that dominate from spring to early fall along the coastal region of the 

Pacific Northwest within the California Current marine ecosystem.  These winds transport 

offshore surface water southward, while also transporting surface water away from the 

coastline (westward).  This offshore, southward transport of surface waters is balanced by 

onshore northward transport (upwelling) of deep, cool, high-salinity, nutrient-rich water 

(Peterson et al. 2006).  The shifting of this highly productive water to the surface of the 

nearshore environment triggers the formation of large phytoplankton blooms.  Phytoplankton 

(minute aquatic plants) form the base of the marine food chain and are eaten by zooplankton 

(microscopic animals, such as copepods, that move passively with ocean currents).  

Zooplankton in turn, are preyed upon heavily by forage fish species and sub-adult coho 

salmon.   

 

Coastal upwelling therefore, is a critical process affecting plankton production, and 

corresponding food availability.  Moreover, the strength and timing of the upwelling event 

effects salmon survival by influencing the overall abundance and spatial distribution of 

plankton within the nearshore marine environment.  Many studies have demonstrated this 

direct relationship.  For example, Gunsolus (1978) and Nickelson (1986) correlated salmonid 

marine survival and the strength and/or timing of marine upwelling.  Holtby et al. (1990) 

examined the scales of returning adult coho salmon in order to determine growth rates, and 

found that rapid ocean growth was “positively correlated with ocean conditions indicative of 

strong upwelling.”  Better ecosystem productivity is also related to earlier seasonal upwelling 

events (Peterson et al. 2006).  Additionally, Cury and Roy (1989) demonstrated a relationship 

between upwelling and recruitment of several pelagic forage fishes in the Pacific. 

 

The cooler water temperatures resulting from upwelling currents along the eastern Pacific 

Ocean originating from the subarctic region support high plankton productivity and salmon 

survival.  Marine productivity and salmon survival are typically much lower when warmer, 

less-saline water upwells from sub-tropic marine regions.  Survival is also likely influenced by 

the species of zooplankton occupying the two water types (cooler subarctic waters, and warmer 
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subtropical waters); sub-arctic copepods are larger and have more fat than sub-tropical ones, 

promoting better support growth and survival of salmon which prey on them, and on forage 

species which eat them (Peterson et al. 2006).  Peterson et al. (2006) developed an index to 

predict salmonid year-class strength based on the species of copepods present over the 

continental shelf and the inferred source of the water transport.   

 

Unfavorable oceanographic conditions also affect adult coho salmon through their impacts on 

forage fishes, the primary food of adult coho salmon.  For example, Pacific herring recruitment 

in the Bering Sea and northeast Pacific was accurately forecast based on the air and sea surface 

temperatures when spawning occurred (Williams and Quinn II 2000), and many Pacific herring 

starved during a winter of low zooplankton abundance in Prince William Sound, Alaska 

(Cooney et al. 2001).  

  

Reduced genetic and life history diversity 

A number of life history and genetic traits also influence coho salmon growth and survival.  For 

sub-adults these include timing of ocean entry, size and age at entry, growth characteristics, 

migration pathways, feeding behaviors, straying, and age and size at maturity (Quinn 2005).  

The influence of each of these traits on growth and survival is dependent on ocean conditions, 

and salmon have a diversity of life history and genetic traits to take advantage of the full range 

of variability which maximizes their resiliency. Overall, coho salmon have experienced a net 

loss of diversity and may not be able to exploit the full range of ocean conditions, which may 

place them at a greater risk of extinction. 

   

As noted above, the timing of ocean entry can affect likelihood of survival.  Ryding and Skalski 

(1999) documented a relationship between the marine survival rate of coded-wire tagged coho 

salmon released from Washington state and the ocean conditions when released.  The authors 

concluded there are optimal environmental conditions for coho marine survival, and thus 

optimal dates for ocean-entry, for any given year.  Similar patterns have been observed with 

pink salmon in Alaska (Cooney et al. 1995).  Research by Mortensen et al. (2000) also suggests an 
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indirect relationship between time of ocean entry and growth and vulnerability to predators of 

sub-adult coho salmon. 

 

Although the date of ocean entry is critical to coho survival, the timing of peak ocean upwelling 

and productivity is quite variable and cannot be reliably predicted.  Between 1967 and 2005, the 

date of spring transition (the start of upwelling), at 39 degrees North latitude, has varied from 

January 1 to early April (Bograd et al. 2009). Coho salmon migrate to sea over a number of 

months, which may increase salmonid year class strength because, although the timing of the 

upwelling event is variable, at least some coho should enter the ocean when conditions were 

favorable.  Size and age variation during outmigration is an important mechanism to improve a 

population’s ability to track environmental change and persist in the marine system2.   

 

The relationship between size and survival of sub-adult coho salmon has been documented in a 

number of studies (e.g., Quinn 2005).  Size-selective mortality in the ocean (mainly through 

predation) suggests larger individuals likely experience higher survival rates than smaller 

individuals (Holtby et al. 1990).  Some individuals may also have a size advantage due to their 

genetic disposition, and this, in turn, may translate to increased growth and survival at sea 

(Beamish et al. 2004).   

 

Once coho salmon reach the ocean they are thought to display a range of different migratory 

pathways depending on their behavior, life history, and genetic makeup (Weitkamp and Neely 

2002).  A wide distribution allows populations and the ESU to take advantage of numerous 

feeding opportunities and spreads the risk of isolated mortality events (such as predation, 

                                                      

2 In Redwood Creek, California, some coho remain in freshwater for one year before outmigration to the ocean, while 

a small number remain for an additional year and smolt as two year-olds (Bell and Duffy 2007).  In Pudding Creek, 

California, 12 percent of the smolts were two year-olds (Wright pers. comm. 2009).  Two year-old coho salmon 

migrate at a larger size and may experience higher marine survival than smaller, one year-old fish, but are 

consequently exposed to an additional year of stresses unique to the freshwater environment.  Depending on both 

ocean conditions and conditions in the freshwater environment, one or both life histories will likely succeed and 

contribute to the persistence of the population.   
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fisheries impacts, or ocean conditions).  In turn, a wide distribution decreases the risk of any 

one population being extirpated in concentrated mortality events. 

 

As adults, some coho salmon display a limited range of life history strategies.  They either 

return to their natal streams to spawn after only a few months at sea as two year-olds (called 

jacks or grilse) or, more typically, after a year at sea as three year olds.  Maintaining a healthy 

abundance of jacks in any population ensures some genetic overlap between brood years and is 

thought to increase the overall productivity of the population.  Also important to the overall 

health and resilience of the ESU is the presence of strays, which do not return to their natal 

spawning grounds and consequently help to colonize new spawning areas and re-establish 

diminished populations.   

 

A diverse array of behaviors and environmental sensitivities, such as those seen in salmon 

populations, are evolutionary responses to successful adaptation in uncertain environments 

(e.g., see Independent Science Group 2000).  At the metapopulation level, each species of Pacific 

salmon exhibits many such risk-spreading behaviors via a broad diversity of time-space habitat 

use by different stocks and substocks of the same species.  Through reduced population size, 

lost connectivity between remaining populations, and the genetic dilution resulting from (past) 

hatchery use of non-native stock (Weitkamp et al. 1995), the CCC ESU has lost much of its 

historical life history and genetic diversity.  The remnant life history characteristics likely limit 

extant populations from taking full advantage of the range of ocean conditions, diminishing 

overall productivity.  In the marine environment, the impact from lost phenotypic diversity is 

probably most pronounced at the sub-adult life stage, since success at that life stage is closely 

correlated with ocean conditions.  Because of the importance of maintaining a diverse set of life 

history strategies and genetic pool to the survival and growth of coho salmon at sea, the loss of 

these traits is considered a medium to high stress. 
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Threats 

Overview of Threats 

Major threats potentially affecting CCC coho salmon in the marine environment include 

incidental take from commercial and recreational fisheries, aquaculture, predation, harvest of 

kelp, wave energy generation, management of prey and competitors, hazardous spills, and 

introduction of non-native species.  The threat of climate change also influences ocean 

productivity, but is discussed separately in the Climate Scenarios section of this appendix.   

 

Commercial and recreational fishery bycatch 

Directed commercial and sport fishing take 

In 1993, the retention of coho salmon in ocean commercial fisheries was prohibited from Cape 

Falcon, Oregon south to the U.S.-Mexico border.  The following year, coho salmon retention 

was prohibited in ocean recreational fisheries from Cape Falcon, Oregon to Horse Mountain, 

California, and expanded to include all California waters in 1995.  These prohibitions prohibit 

direct sport and commercial harvest of coho salmon off the California and Southern Oregon 

coast, the sole exception being a mark-selective recreational coho salmon fishery that has taken 

place in recent years in Oregon waters.  While the number of CCC coho harvested within the 

Oregon mark-selective fishery is difficult to determine, the percentage is likely lower than the 

projected 3.3 percent non-retention exploitation rate for Rogue/Klamath coho salmon (PFMC 

2007) due to the more southern marine distribution of CCC coho versus Southern-Oregon 

Northern California Coast ESU (NMFS 1999a)3.  Therefore, the primary harvest-related impact 

on CCC coho salmon likely arises from incidental take through other fisheries.  This impact is 

likely largely restricted to adult fish and has little effect on the sub-adult life stage, which is 

likely too small to be efficiently captured in this fishery. 

 

                                                      

3 NMFS (1999a) suggests exploitation rates for CCC coho salmon may be higher than SONCC coho salmon due to the 

overwhelming effect of the central and northern California sport and commercial Chinook fishery.  However, due to 

recent declines in Klamath and Sacramento River Chinook salmon populations, Chinook salmon fishing off the 

California coast has been severely restricted in 2007, 2008, and 2009, and the size and extent of future seasons is 

uncertain. 
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The State of California has recently begun implementing a series of underwater parks and 

reserves along the California coast as part of the Marine Life Protection Act (MLPA) of 1999.  

The goal of the MLPA is to “protect habitat and ecosystems, conserve biological diversity, 

provide a sanctuary for fish and other sea life, enhance recreational and educational 

opportunities, provide a reference point against which scientists can measure changes 

elsewhere in the marine environment, and may help rebuild depleted fisheries (CDFG 2008)”.  

Fishing will be closed or severely restricted in most protected areas, which will ultimately 

account for approximately 20 percent of state coastal waters (out to three miles off-shore).  

However, many of the restricted areas coincide with rocky benthic habitat which salmon may 

inhabit only sporadically, and many of the more popular salmon fishing areas are not expected 

to be part of the MLPA program.  Furthermore, some MLPA areas where fishing is restricted 

make exceptions with regard to salmon fishing.  For these reasons, NMFS does not expect a 

significant reduction in ocean salmon harvest resulting from the MLPA program. 

 

Bycatch in Federal salmon fisheries 

The Pacific Fishery Management Council (PFMC) manages salmonid fisheries in Federal waters.  

The CCC coho salmon ESU is one component of the Oregon Production Index (OPI) area coho 

stocks.  Because there are insufficient hatchery releases from within the CCC coho ESU to 

support an estimate of fishery bycatch in the Chinook salmon fishery (CDFG 2002), the 

projected marine fishery impacts on Rogue/Klamath River (R/K) hatchery coho were used as a 

surrogate.4  Coho are intercepted in Chinook-directed fisheries and must be immediately 

released.  However, some will die, as reflected by the 13 percent marine fishery mortality rate 

allowed for R/K hatchery coho salmon (NMFS 1999a).  Given that the estimated discard 

mortality rate for R/K hatchery coho salmon has been the 13 percent maximum for at least the 

last three years (PFMC 2007), and prohibitions on take of OPI area coho stocks have not 

changed, the Federal salmon fishery was determined to pose a low threat to the CCC coho 

salmon ESU.   

                                                      

4 The assumption is that exploitation rates of hatchery and wild coho salmon stocks are similar. 
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Bycatch in State salmon fisheries 

All marine fishing occurring within three miles of the California shore is managed by CDFG.  

Chinook salmon harvest is allowed in California waters and is subject to area restrictions, gear 

restrictions, seasonal closures, and bag limits (CDFG 2011).  Harvest of coho salmon is 

prohibited in California waters (except Lake Oroville), and any incidentally hooked coho 

salmon must be immediately released unharmed (CDFG 2011). 

 

The impacts of state-regulated Chinook salmon and steelhead fisheries on CCC coho salmon 

have not been evaluated but could be significant.  Listed salmon and steelhead are likely to 

occur within the marine environment at the same time, and in the same locations, as non-listed 

salmonids, and are likely to be captured by the same gear and fishing methods.  Bycatch 

mortality may be enough to hinder recovery due to the extremely low size of the population.  In 

parts of California, ocean fishers use a “drift mooching” method of capturing salmonids, where 

bait is suspended in the water column and moved by the ocean currents as the boat drifts.  

Salmon are more likely to swallow the hook when caught using drift mooching than when 

caught while trolling, and are less likely to survive when released.  The survival of Chinook 

salmon caught and released off Northern California from drift mooching was monitored for 

four days and compared to a control group (Grover et al. 2002).  The overall hook-and-release 

mortality rate for the study was estimated at 42 percent, significantly greater than the 13 percent 

mortality cap in Federal ocean fisheries.  While the study did not evaluate impacts to coho 

salmon (due to the statewide prohibition on harvest of this species) the impacts between species 

are likely similar.  Given coho occur higher in the water column than Chinook salmon, fishers 

targeting Chinook salmon may not encounter coho salmon.  However, since most of the lifetime 

mortality suffered by a coho salmon occurs before they reach adulthood (Quinn 2005), an adult 

coho salmon that has survived at least a year of ocean life and is not far from spawning age is 

particularly valuable for recovery.  The PFMC salmon FMP includes the 42 percent bycatch 

mortality rate from mooching as part of its recreational bycatch mortality rate for the area south 

of Point Arena.  However, as coho recover, this mortality rate could have a proportionately 
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greater impact on the ESU than it does now, as the rate CCC coho are encountered increases.  

This fishing method could hinder recovery.   Given the impact the state salmonid fishery on 

CCC coho salmon is unknown but potentially significant; this fishery was determined to pose a 

medium threat to the recovery of this ESU. 

 

Federal non-salmon fisheries 

The PFMC manages four stocks (aka stock complexes) in Federal waters potentially affecting 

CCC coho salmon through fishery bycatch: groundfish, coastal pelagic species (CPS), highly 

migratory species (HMS), and Pacific halibut.  NMFS evaluated the impacts of the groundfish 

fishery on listed salmon and steelhead and concluded it was not likely to adversely affect 

salmon or adversely modify critical habitat (NMFS 1999b; NMFS 2005).  Salmonids could be 

accidentally captured in fisheries targeting CPS, but NMFS determined, although some ESUs of 

coho salmon are captured in CPS fisheries, CCC coho are not captured (PFMC 2005).   The HMS 

fishery targets various species of tunas, sharks, and billfishes as well as mahi-mahi.  A 2004 

Biological Opinion stated, although all listed salmonid ESUs could occur in the area where 

HMS fishing occurs, there are no records indicating any instance of take of listed salmon in any 

HMS fisheries.   

 

Pacific halibut occur on the continental shelf from California to the Bering Sea.  Harvest of this 

species is managed by the International Pacific Halibut Commission (IPHC), which determines 

allowable catch.  Although fishing for this species is allowed in California, in the past ten years 

only one Pacific halibut was commercially landed in waters off California (Leaman, Executive 

Director, International Pacific Halibut Commission, personal communication, 2007).  Based on 

surveys from 1200 stations off of Washington and Oregon, an average of less than one salmon is 

captured per year survey wide (Dykstra, Survey Manager, International Pacific Halibut 

Commission, personal communication, 2007).  The number of salmon caught in the recreational 

halibut fishery off California appears very small (Palmer-Zwahlen, CDFG, personal 

communication, 2007).  
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Marine aquaculture 

Concerns have been raised over environmental impacts of salmonid culture activities in 

nearshore or open ocean areas.  Potential impacts include disease and parasite transmission, 

water quality impairment, and genetic interactions.  The recovery of CCC coho salmon is 

unlikely to be hindered by current marine aquaculture activities because, aside from the 

shellfish farming (e.g., oysters and abalone) occurring in estuaries, marine aquaculture is largely 

absent from the waters off the California coast where CCC coho salmon spend most of their 

ocean residency.  Further, marine culture of salmonids cannot occur in California’s 

jurisdictional waters, which extend three miles into the Pacific Ocean (see State of California’s 

2006 Sustainable Oceans Act).  In Federal waters (between three and 200 miles from the west 

coast), the process for obtaining a permit to carry out aquaculture is unwieldy, time consuming, 

and unattractive to investors (NOAA 2007).  A bill to establish Federal guidelines for offshore 

aquaculture and improve the permitting process was recently considered by congressional 

committees.  This legislation would retain NMFS’ review of permit applications to ensure they 

do not jeopardize the continued existence of CCC coho salmon.  Given the low likelihood of any 

additional aquaculture operations off the California coast in the next five plus years, and the 

expected close evaluation of any proposals by NMFS, EPA, and other agencies, the threat to 

listed salmonids from the culture of animals in nearshore and offshore marine areas is rated as 

low. 

 

Marine mammal predation 

Predation by marine mammals (principally seals and sea lions) is of concern in areas 

experiencing dwindling run sizes of salmon (69 FR 33102).  However, salmonids appear to be 

minor component of the diet of marine mammals (Scheffer and Sperry 1931; Brown and Mate 

1983; Hanson 1993; Goley and Gemmer 2000; Williamson and Hillemeier 2001).  Harbor seal 

and California sea lion numbers have increased along the Pacific Coast since passage of the 

Marine Mammal Protection Act of 1972, but available information indicates salmon are not a 

principal food source for pinnipeds (Quinn 2005).  At the mouth of the Russian River in western 
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Sonoma County, Hanson (1993) reported foraging behavior of California sea lions and harbor 

seals with respect to anadromous salmonids was minimal.  Hanson (1993) found predation on 

salmonids coincidental with the salmonid migrations, but the harbor seal population at the 

mouth of the Russian River was not dependent upon them.  Nevertheless, this type of predation 

may, in some cases, kill a significant fraction of a run and local depletion might occur (NMFS 

1997; Quinn 2005).  At the ESU level, NMFS considers the threat of marine mammal predation 

low. 

 

Avian predation 

Avian predation is not expected to constitute a significant threat to adult CCC coho salmon 

because of their relatively large size once in the ocean.  All documented incidences of significant 

effects of avian predation on juvenile salmonids have occurred in estuarine areas near large 

nesting colonies with high avian densities.  While birds are also known to feed on schools of 

fish in the open ocean (Scheel and Hough 1997), indirect evidence shows salmonids do not 

generally occur in tight schools.  Many salmon probably do not swim in sight of other salmon, 

and when they have been observed together it is usually in groups of less than four (Quinn 

2005).  Avian predation is not expected to constitute a significant threat to sub-adult coho 

salmon when they occur in nearshore oceanic areas used by CCC coho salmon. 

 

Management actions affecting nearshore marine habitat 

Harvest of kelp from nearshore marine areas 

Both bull and giant kelp are currently harvested from California waters (Spinger et al. 2006).  

Small quantities of each species are currently harvested, due to limited commercial demand.  

The upper four feet of canopy and leaves of giant kelp are harvested, allowing the plant to 

continue to grow and reproduce (Spinger et al. 2006); therefore, giant kelp are essentially a 

renewing crop.  However, when bull kelp are harvested, the pneumatocyst and associated 

fronds are removed, which eventually kills the plant.  Harvest of bull kelp before it reproduces 
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may destroy beds of this species and reduce the amount of habitat available to juvenile CCC 

coho salmon.  The extent CCC coho salmon utilize kelp is unknown. 

 

Surveys of the fish communities in kelp beds off California south of the CCC coho salmon ESU 

range are focused on rockfishes and do not mention salmon (e.g., Paddack and Estes 2000).  No 

salmon were found in studies of beds of bull kelp off South-central Alaska (Hamilton and 

Konar 2007), but salmon were found in beds of brown kelp off Southeastern Alaska (Johnson et 

al. 2003).  In Washington’s Strait of Juan de Fuca, juvenile Chinook and chum salmon appeared 

to preferentially use kelp beds (which included both bull kelp and giant kelp) over unvegetated 

habitats (Shaffer 2004).   

 

The above studies suggest coho salmon could use kelp beds, and some of these kelp beds may 

be negatively affected by harvest.  But at this time, there is no evidence CCC coho salmon rely 

on kelp beds for shelter in the nearshore marine environment, and no harvest of the kelp beds 

occurs within the CCC coho salmon ESU range.  The threat to CCC coho salmon from the 

harvest of kelp from nearshore marine waters was rated as Low. 

 

Wave energy generation in the nearshore environment 

Wave energy can be harnessed to provide electricity, and there are three proposals to do so in 

the marine range of the CCC coho salmon ESU (Boehlert et al. 2008).  The production has a 

potential to impact CCC coho salmon and their marine habitat.  According to the proceedings of 

a recent workshop on the ecological effects of wave energy generation in the Pacific Northwest 

(Boehlert et al. 2008), the electromagnetic fields and noise associated with wave energy’s 

underwater structures have the most potential of all wave energy efforts to negatively affect 

salmon.  Salmon may avoid the structures due to electromagnetic fields and/or noise, and such 

avoidance could interfere with the migration of juveniles along the coast, and disrupt adult 

spawning migrations.  The generation of electricity from waves reduces wave energy, changing 

nearshore wave processes and potentially altering benthic communities where juvenile salmon 

feed.  The harnessing of wave energy may affect transport of zooplankton (Boehlert et al. 2008), 
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and so could impact CCC coho salmon’s food supply.  The workshop participants 

acknowledged a high degree of uncertainty regarding the actual effects of wave energy 

generation on salmon, because little data documenting effects exists.  Currently, wave energy 

poses a low threat to sub-adult and adult CCC coho salmon since no operational projects exist 

at this time.  However, thorough research investigating potential adverse impacts on salmon 

and nearshore habitat should be required before future wave energy projects are permitted. 

 

Management of coho prey and competitors 

As coho grow in the ocean, their diet becomes more and more reliant on other fish species.  

Some concern has been raised over the possibility human harvest of salmon prey species may 

disrupt the aquatic ecosystem.  If enough forage fish were harvested, there may not be enough 

prey items for higher level predators such as salmon and marine mammals.  The effects of 

forage fish availability on salmonid predator behavior was recognized as a factor influencing 

the species when CCC coho were listed (69 FR 33102):   

“The federally-managed fishery with the most potential to impact prey availability for 

CCC coho salmon is the coastal pelagic species (CPS) fishery. This group includes 

northern anchovy, market squid, Pacific bonito, Pacific saury, Pacific herring, Pacific 

sardine, Pacific (chub or blue) mackerel, and jack (Spanish) mackerel.  Anchovy and 

sardine are known as important forage species for predators including salmon and 

steelhead (PFMC 2005; Quinn 2005).  CPS are extremely important links in the 

marine food chain, and disruptions in their distribution and abundance may impact 

salmon population dynamics (PFMC 2003).” 

 

CPS harvest could indirectly affect salmon if it resulted in an inadequate amount of prey species 

for foraging salmon.  The PFMC has adopted a conservative, risk-averse approach to 

management of CPS that reduces the likelihood of such negative effects.  The need to “provide 

adequate forage for dependent species” is recognized as a goal and objective of the CPS FMP 

(PFMC 1998).  A control rule is a simple formula used by the PFMC in evaluating allowable 

harvest levels for each of the CPS.  The CPS control rules contain measures to prevent excessive 
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harvest, including a continual reduction in the fishing rate if biomass declines.  In addition, the 

control rule adopted for species with significant catch levels explicitly leaves thousands of tons 

of CPS biomass unharvested and available to predators.  No ecosystem model currently exists 

to calculate the caloric needs of all predators in the ecosystem, so the amount of unharvested 

CPS biomass is an estimate which may be modified if new information becomes available.  

Ocean temperature is a factor in the control rule for Pacific sardine, in recognition of the effects 

of varying ocean conditions on fish production rates.  Allowable harvest rates are automatically 

reduced in years of poor production. 

 

The impacts of these fisheries on Federally-listed ESUs of salmon and steelhead were not 

evaluated by NMFS.  However, due to the conservative control rules used to manage CPS and 

the preservation of a portion of the biomass for predator consumption, the CPS fishery poses a 

Low threat to CCC coho salmon recovery. 

 

Transportation-related hazardous spills 

Oil spills can have significant, catastrophic effects on aquatic ecosystems (National Research 

Council 2003), including acute mortality of fishes.  The effects of crude oil on pink salmon were 

studied extensively since the Exxon Valdez oil spill in Prince William Sound, Alaska.  Although 

some researchers found the oil spill affected growth rates of juvenile pink salmon (Moles and 

Rice 1983; Willette 1996), a review of all research on this topic showed the spill posed a low risk 

to this species (Brannon and Maki 1996).  The relatively low depth of the oil entering the water 

column and the short time it remained in important natal gravel beds (Brannon and Maki 1996) 

may account for this effect.  Oil spills appear to have the greatest effect on aquatic birds and 

marine mammals and benthic (bottom-dwelling aquatic) organisms (Boesch et al. 1987).  The 

egg, alevin, and fry life stages of salmonids utilize benthic habitat in freshwater and brackish 

areas, and indeed toxic effects of crude oil were documented on the embryos and larvae of 

herring on oil-affected beaches (Hose et al. 1996).  However, none of these salmonid life stages 

occur in nearshore marine areas or the open ocean, and direct effects of oil spills on salmon 

occurring in these areas is likely low.  Indirect effects could include degradation of submerged 
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aquatic vegetation such as kelp and eelgrass used by some juvenile salmonids in nearshore 

areas (Thorpe 1994).  Disruption of the food web could also be detrimental to these fishes.  

Although in some circumstances crude oil may inhibit photosynthesis of natural phytoplankton 

communities, in inland areas of Nova Scotia, Canada, researchers determined that in open 

marine waters oil did not negatively affect photosynthesis (Gordon and Prouse 1973). 

 

Introduction of non-native species 

Some invasive species are detrimental to salmonids, particularly in the freshwater or estuarine 

environments.  Conditions in the open ocean are less hospitable to many invasive species than 

estuaries5, and non-marine fish do not tend to survive when released into marine waters.  Of 22 

fish species successfully introduced into marine waters, all of them came from marine waters, 

indicating introductions of freshwater or brackish fish species into marine waters were 

unsuccessful (Hare and Whitfield 2003).  All but one of these 22 marine fish species was 

released from an aquarium or accidentally or intentionally stocked (Hare and Whitfield 2003).  

Since the sub-adult and adult life stages of CCC coho salmon occur in the ocean, introduction of 

non-native species is unlikely to affect them because the introduced species are unlikely to 

survive.  Proposed national offshore aquaculture legislation would usually only allow marine  

culture of native species in Federal waters (NOAA 2007), making it is unlikely further stocking 

of potentially harmful non-native species will occur in marine waters off California.  The threat 

to sub-adult and adult CCC coho salmon from introduction of additional non-native species 

was therefore rated low. 

 

Recovery Strategy for CCC coho salmon in the eastern pacific 

Marine factors will strongly influence CCC coho salmon recovery, but not solely due to obvious 

threats such as pollution or over-harvest.  Rather, freshwater and marine impacts have reduced 

CCC coho salmon genetic and life history diversity, leaving the species less equipped to deal 

                                                      

5 This has led to a requirement to replace ballast water in the ocean before entry into California state waters if the vessel intends 

to dock at any California port (State of California 2003). 
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with variable, unpredictable, and often hostile oceanic conditions.  The best means to improve 

CCC coho salmon survival in the marine environment is to preserve and strengthen the existing 

genetic and life history diversity in the ESU, which will likely improve population abundance 

over the long-term.  In addition, a better understanding of the ocean conditions each year is 

necessary so that managers could account for periods of poor ocean productivity and high 

marine mortality when estimating population abundance, harvest levels, and ultimately the 

progress toward ESU recovery. 

 

Improve the quantity and/or quality of food resources 

This is the top-ranked stressor for sub-adult and adult CCC coho salmon, because it results 

from unfavorable ocean conditions.  As ocean conditions are not under human control in the 

time frame relevant to CCC coho salmon recovery (e.g., 50 years), there are no recovery 

strategies which could “improve” them.  However, strategies which improve genetic and life 

history diversity in the CCC coho salmon ESU would effectively equip the salmon to better 

survive an unpredictable ocean environment.  Further research is necessary to discern possible 

connections  between global climate change and cyclic patterns of ocean productivity.  If a link 

is found, actions identified to alleviate or diminish global climate change may have value in 

moderating marine productivity patterns and improving salmon survival. 

 

Increase genetic and life history diversity 

Before anthropogenic stressors within the freshwater, estuarine, and marine environment 

depressed the CCC coho salmon population to a level requiring protection under the ESA, 

abundant, genetically diverse juvenile salmon entered the ocean each year over a wide range of 

dates, seasons, and ages from approximately 76 CCC coho salmon populations (Bjorkstedt et al. 

2005).  It is necessary to restore this lost diversity and life-history adaptation to allow CCC coho 

salmon populations to adapt and persist within the variable ocean environment.  To foster 

greater life history and genetic diversity, recovery actions must be undertaken to improve the 

various habitats supportive of diverse life history strategies.  Management and recovery 
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strategies must adapt to address and conserve the full range of life history potential of a given 

populations, and hatchery practices must be managed to avoid degrading the genetic diversity 

of wild stocks.   

 

Increase population size 

Federal fisheries have been evaluated and appear to pose a low threat to CCC coho salmon, 

likely due to coho salmon harvest prohibitions in California and a low allowable CCC coho 

salmon bycatch mortality rate for Federally-managed ocean fisheries.  The harvest prohibition 

extends into ocean waters managed by the state of California.  All existing prohibitions and 

bycatch mortality rates should be retained or made more conservative.  Salmonid fisheries in 

state waters have the potential to negatively impact the ESU and the extent of such impact has 

not been evaluated.  Development of a Fishery Management Evaluation Plan (FMEP) is 

necessary for NMFS to determine what risk, if any, these fisheries pose to the CCC coho salmon 

ESU.  The effects of drift mooching on CCC coho salmon should be minimized through 

educating anglers on the use of drift mooch methods that lessen the probability of gut hooking, 

as suggested in Grover et al. (2002). 
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Overview: Climate Change and Pacific Salmon 

The best available scientific information indicates the climate is warming, driven by the 

accumulation of greenhouse gasses (GHGs) in the atmosphere (IPCC 2007).  The 

Intergovernmental Panel on Climate Change (IPCC) concluded in 2007, warming of the climate 

system is “unequivocal,” based on observations of increases in global average air and ocean 

temperatures, widespread melting of snow and ice, and rising global average sea level.  In a 

recent 2011, report on the Global Climate Change Impacts in the U.S. it was noted, “…salmon in 

the Northwest are under threat from a variety of human activities, but global warming is a 

growing source of stress.” Salmon and steelhead from northern California to the Pacific 

Northwest are challenged by a global warming induced alteration of habitat conditions 

throughout their complex life cycles (Mantua and Francis 2004; Glick 2005; ISAB 2007; Martin 

and Glick 2008; Glick et al. 2009).  Salmon productivity in the Pacific Northwest is sensitive to 

climate-related changes in stream, estuary, and ocean conditions.  Specific characteristics of a 

population vulnerable to climate change include temperature requirements, reliance on 

snowpack, suitability of available habitat, and the genetic diversity of the ESU. These changes 

could alter freshwater habitat conditions and affect the recovery and survival of Pacific salmon 

stocks.   

 

Climate shifts can affect fisheries, with profound socio-economic and ecological consequences 

(Osgood 2008). Climate change introduces additional, uncertain impacts to California’s 

ecosystems and species, ranging from changes in the timing of bird migrations in spring, to 

large-scale movement of species, to increased frequency of forest fires.  These are other impacts 

threaten to disrupt existing current natural communities, and may push many species toward 

 “There are two key sources of greenhouse gas emissions: fossil fuels and forest change.  

Any successful climate strategy must address both.” 

Laurie Wayburn, Pacific Forest Trust  
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extinction. In addition, climate change will interact with other stressors, such as habitat 

destruction, that are already threatening species and ecosystems, making it more difficult to 

achieve conservation goals.  

 

In the Pacific Region, global climate change will lead to major alterations in freshwater 

environments.  The biological implications of physical habitat changes on Pacific salmon are 

significant.  Changes in timing/magnitude of flow and thermal regimes can affect the behavior 

and physiological responses of salmon during their freshwater life stages.  Human activities can 

affect biophysical changes by imposing additional stressors such as unsustainable exploitation 

rates on vulnerable populations, and reduced water availability in stressed areas.  Threat 

minimization actions may include adjustment of harvest rates and improved management of 

freshwater supplies.   

 

Climate variability is an important factor controlling the distribution and abundance of 

organisms and determining the ecosystem structure.  Changes in seasonal temperature regimes 

affect fish and wildlife (Quinn and Adams 1996; Schneider and Root 2002; Walther et al. 2002).  

These effects manifest themselves differently in different organisms, some undergo changes in 

the timing of spring activities, including earlier migration and breeding in birds, butterflies and 

amphibians, and flowering of plants (Walther et al. 2002).  In response to warmer water 

temperatures, a number of fish species shift their distribution to deeper, cooler water, or move 

pole ward (Osgood 2008).  Along with the increase in global temperatures, smaller scale 

geographic changes in temperature, wind, and precipitation are anticipated (CEPA 2006; 

Osgood 2008) .  Freshwater streams (a key habitat for coho salmon), may experience increased 

frequencies of floods, droughts, lower summer flows and higher temperatures (Luers et al. 2006; 

Lindley et al. 2007; Schneider 2007; Osgood 2008).  Estuarine and lagoon habitats are likely to 

experience a sea level rise and changes in entering stream flow (Scavia et al. 2002).  The marine 

environment is important to sub-adult and adult salmonids and is likely to experience changes 

in temperature, circulation, chemistry, and food supplies (Brewer and Barry 2008; Turley 2008; 

O’Donnell et al. 2009).  Because coho salmon depend on freshwater streams and oceans during 
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different stages of their life history cycle, their populations are likely to be affected by many of 

the climate induced changes shown below in Figure 1. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pacific salmon are affected by climate change across a hierarchy of coarse and fine spatial and 

temporal scales and each of these scales has distinct requirements in the development of policy 

that will cover climate change effects (Schindler et al. 2008).  Efforts to minimize the impacts of 

climate change will take national and international actions beyond the scope of this recovery 

plan.  Although at a local scale, identification and mitigation of impacts from global climate 

change can help alleviate its effects at (Osgood 2008).  Effective management is important and 

 

Figure 1: Salmon life history and the impacts of climate change. 
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adaptive strategies must consider climate variability.  Nearly 75 percent of California’s 

anadromous salmonids are vulnerable to climate change, and future climate change will affect 

the ability to influence their recovery in most or all of their watersheds (Moyle et al. 2008).  The 

following sections describe key issues for consideration regarding impacts of climate change to 

coho salmon in the CCC ESU.   

 

Climate Change in California 

Recent studies call for improved legal and planning protection explicitly accounting for the 

impacts of climate change in California (Luers and Mastrandrea 2008; Mastrandrea and Luers 

2012).  A number of climate models evaluate climate change uncertainties and forecast future 

climate conditions at global and regional scales.  Although, studies were conducted to examine 

the projected impacts of climate change on salmon habitat restoration, specifically Chinook 

salmon (Battin et al. 2007), few studies examine projected impacts to coho salmon.    

 

Integral to understanding climate change effects on salmon is an understanding of how 

variations in salmon abundance corresponds to climate-related ecosystem regime shifts (Irvine 

and Fukuwaka 2011).  The IPCC-AR4 global climate models (GCMs) do not resolve certain 

parameters at a fine enough resolution and/or sufficient detail to produce a true forecast, and 

higher resolution regional climate models (RCMs) are under development (King et al. 2011).  

Available model predictions show a range of relatively low to high impacts depending on 

which model is used and the greenhouse gas emissions scenario considered.  Even the low 

impact predictions show changes in California’s temperatures, rainfall, snowpack, vegetation, 

as well as potential changes in ocean conditions likely to have negative impacts on salmonid 

population numbers, distribution, and reproduction.  It is likely, one of the greatest near-term 

climate challenges California will face are more intense and/or frequent extreme weather events 

(Meehl et al. 2007; Mastrandrea and Luers 2012).    
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Impacts on Freshwater Streams 

Climate change impacts in California suggests average summer air temperatures will 

increase(Lindley et al. 2007).  Heat waves are expected to occur more often, and temperatures 

peaks are likely to increase (Hayhoe et al. 2004).  Total precipitation in California may decline 

and the frequency of critically dry years may increase (Lindley et al. 2007; Schneider 2007) 

which under unimpaired condition would result in decreased stream flow.  Wildfires are 

expected to increase in frequency and magnitude, by as much as 55 percent under the medium 

emissions scenarios modeled (Luers et al. 2006).  Vegetative cover may also change, with 

decreases in evergreen conifer forest and increases in grasslands and mixed evergreen forests.  

Impacts on forest productivity are less clear.  Tree growth may increase under higher CO2 

emissions, but as temperatures increase, the risk of fires and pathogens also increases (CEPA 

2006).   

 

Air temperature 

According to NOAA’s 2008, State of the Climate Report and NASA’s 2008, Surface Temperature 

Analysis, the average surface temperature has warmed about 1° F since the mid-1970’s.  The 

Earth’s surface is currently warming at a rate of about 0.29° F/decade or 2.9° F/century, and the 

eight warmest years on record (since 1880) have all occurred since 2001, with the warmest year 

occurring in 2005.  The range of surface water temperatures are likely to shift, resulting in 

higher high temperatures as well as higher low temperatures in streams.  A recent study of the 

Rogue River basin in Oregon determined annual average temperatures are likely to increase 

from 1° to 3° F (0.5° to 1.6° C) by around 2040 and 4° to 8° F (2.2° to 4.4° C) by around 2080.  

Summer temperatures may increase 7° to 15° F (3.8° to 8.3° C) above baseline by 2080, while 

winter temperatures may increase 3° to 8° F (1.6° to 3.3° C) (Doppelt et al. 2008).  Temperature 

changes throughout the NCCC Domains are likely to be similar.  A study by Littell et al. (2009) 

suggested one third of the current habitat for listed Pacific salmon species may be unsuitable by 

the end of this century when temperature thresholds are exceeded.   

 

Increasing air temperatures have the potential to limit the quality and availability of summer 
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rearing habitat for juvenile CCC coho salmon by increasing water temperatures.  Increases in 

fall and winter temperature regimes might shorten incubation and emergence for developing 

eggs, which Burger et al., (1985) predicted would lead to lower survival rates. Increases in 

summer temperatures will lead to thermal stress, decreased growth and affect survival of out 

migrating juveniles.  For example, modeling results reported by Lindley et al. (2007) show, as 

warming increases, the geographic area experiencing mean August air temperature exceeding 

25° C moves further into coastal drainages and closer to the Pacific Ocean.  This increase in 

temperature will likely lead to an increase in stream temperatures in these areas, many of which 

are areas with focus populations.  Many stream temperatures in the CCC coho salmon ESU are 

at or near the high temperature limit of coho salmon and increasing water temperatures may 

limit habitat suitability in an unknown number of stream reaches.  

 

Precipitation 

Annual precipitation could increase by up to 20% in northern California.  Most precipitation 

will occur during the mid-winter months as intense rainfall events.  These weather patterns  

will likely result in a higher numbers of landslides and greater and more severe floods (Doppelt 

et al. 2008; Luers et al. 2006).  For the California’s North Coast (including the northern part of the 

NCCC Domain), some models show large increases (75% to 200 %), while other models show 

decreases of 15 to 30% (Hayhoe 2004) in rainfall events.  Increases in rainfall during the winter 

have the potential to increase the loss of salmon redds via streambed scour from more frequent 

high stream flows.  Reductions in precipitation will likely lower flows in streams during the 

spring and summer, reducing the availability of flows to support smolt migration to the ocean 

as well as the availability of summer rearing habitat.   

 

Sea Level Rise 

According to the 2002, report released by the U.S. Global Climate Research Program (USGCRP), 

sea level is expected to rise exponentially over the next 100 years, and is estimated to rise 50-80 

cm by the end of the 21st century.  Additional research on sea level rise estimates the high end 

of possible sea level rise by 2200, to be 1.5 m to 3.5 m Vellinga et al. (2008).  It is predicted that 
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low lying coastal areas will eventually be inundated by seawater or periodically over-washed 

by waves and storm surges. Coastal wetlands will become increasingly brackish as seawater 

inundates freshwater wetlands.  As a result, new brackish and freshwater wetland areas will be 

created (Pfeffer et al. 2008).  Sea level rise will also alter estuarine habitat; which may provide 

increased opportunity for feeding and growth of salmon, but in some cases sea level rise will 

lead to the loss of estuarine habitat and a decreased potential for estuarine rearing.   

 

In 2009, The Pacific Institute released a study on the impacts of sea-level rise on the California 

Coast. The study included a detailed analysis of the current population, infrastructure, and 

property at risk from projected sea‐level rise if no actions are taken to protect the coast, and the 

cost of building structural measures to reduce that risk.  Findings from the report conclude; (1) a 

sea‐level rise of 1.4 m would flood approximately 150 square miles of land immediately 

adjacent to current wetlands, potentially creating new wetland habitat if those lands are 

protected from further development; (2) approximately 1,100 miles of new or modified coastal 

protection structures are needed on the Pacific Coast and San Francisco Bay to protect against 

coastal flooding, and (3) continued development in vulnerable areas will put additional areas at 

risk and raise protection costs (Heberger et al. 2009).  San Francisco Bay is of particular concern, 

with increased risk to; existing wetlands, unprotected developed areas, and existing levees 

(Knowles 2010; Cloern et al. 2011).     

 

NOAA is developing a strategic approach to integrate its coastal activities, with a specific focus 

on improving risk assessment and adaptation to climate change in coastal areas.  Significant 

efforts are underway to improve the design, development, and delivery of effective climate 

services to NOAA and stakeholders through a National Climate Service as part of the National 

Climate Service Act of 2009.  To aid understanding of the impacts of sea level rise on coastal 

communities, NOAA’s Coastal Services Center provides a number of new mapping tools and 

techniques illustrating the impacts of sea level rise and coastal flooding.  One of these tools is 

the Sea-level Rise and Coastal Flooding Impacts Viewer that; (1) displays future sea level rise, (2) 

provides simulations of sea level rise at local landmarks, (3) communicates the spatial 
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uncertainty of mapped sea level rise, (4) models potential marsh migration, (5) overlays social 

and economic data on potential sea level rise and (6) examines how tidal flooding will become 

more frequent with sea level rise.  These tools/techniques will increase understanding of the 

impacts of sea level rise on salmonid habitats and should aid in an adaptive management 

strategy for coho salmon recovery.  

 

Wildfire 

The frequency and magnitude of wildfires are expected to increase in California (Luers et al. 

2006; Westerling and Bryant 2006).  The link between fires and sediment delivery to streams is 

well known (Wells 1987; Spittler 2005).  Fires increase the incidence of erosion by removing 

vegetative cover from steep slopes.  Subsequent rainstorms produce debris flows that carry 

sediments to streams.  Increases in stream sediment can reduce egg to emergence survival and 

stream invertebrate production, an important food source for rearing salmon and steelhead 

juveniles (Bjornn and Reiser 1991; Waters 1995). 

 

Vegetative cover 

Changes in vegetative cover can impact coho salmon habitat in California by reducing stream 

shade (thereby promoting higher stream temperatures), and changing the amount and 

characteristics of woody debris in streams.  High quality habitat for most CCC coho salmon 

streams with extant populations is dependent upon the recruitment of large conifer trees to 

streams.  Once trees fall into streams, their trunks and root balls provide hiding cover for 

salmonids.  In streams, large conifer trees can also interact with stream flows and stream beds 

and banks, creating deep stream pools needed by salmonids to escape summer high water 

temperatures.   These pools are essential for coho salmon feeding and rearing.   

 

Impacts on the Marine Environment 

Marine ecosystems will change as a result of global climate change; many of these changes will 

likely have deleterious effects on salmon growth and survival while at sea.  There is uncertainty 

about the effects of changing climate on marine ecosystems given the degree of complexity and 
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overlapping climatic shifts currently exist (e.g., El Niño, La Niña, and Pacific Decadal 

Oscillation).  El Niño events and periods of unfavorable ocean conditions threaten the survival 

of salmonid populations (at low abundance) due to degradation of estuarine habitats and 

reduced food availability (NMFS 1996).  Scientists studying the impacts of global warming on 

the marine environment predict the coastal waters, estuaries, and lagoons of the West Coast of 

the will experience increased climate variability, changes in the timing and strength of the 

spring transition (onset of upwelling), warming and stratification, and changes in ocean 

circulation and chemistry (Scavia et al. 2002; Diffenbaugh et al. 2003; Feely 2004; Osgood 2008).   

 

Current and projected changes in the North Pacific include: rising sea surface temperatures that 

increase the stratification of the upper ocean; changes in surface wind patterns impacting the 

timing and intensity of upwelling of nutrient-rich subsurface water; and increasing ocean 

acidification which will change plankton community compositions with bottom-up impacts on 

marine food webs (ISAB 2007). Ocean acidification also has the potential to dramatically change 

the phytoplankton community due to the likely loss of most calcareous shell-forming species 

such as pteropods.  Recent surveys show ocean acidification is increasing in surface waters off 

the west coast, and particularly the northern California coast at a more rapid rate than 

previously estimated (Feely et al. 2008).  Shifts in prey abundance, composition, and distribution 

are the indirect effects of these changes.    

 

Direct effects to marine organisms include decreased growth rates due to ocean acidification 

and increased metabolic costs as sea surface temperatures increase (Portner and Knust 2007).  

Northwest salmon populations have fared best in periods having high precipitation, cool air 

and water temperatures, cool coastal ocean temperatures, and abundant north-to-south 

"upwelling" winds in spring and summer.  If conditions are warmer, upwelling may be delayed, 

and salmon may encounter less food or may have to travel further from to find satisfactory 

habitat, increasing energy demands, and slowing growth and delaying maturity (ISAB 2007).   

 

Climate Variability and the Spring Transition 



Appendix A: Marine and Climate  

Final CCC Coho Salmon ESU Recovery Plan (Volume III of III)  September 2012 

  31 

Global warming may change the frequency and magnitude of natural climate events that affect 

the Pacific Ocean (Osgood 2008).  For instance, intense winter storms may become more 

frequent and severe.  El Niño events may occur more often and be more severe.   The Pacific 

Decadal Oscillation (PDO) is expected to remain in in warmer ocean conditions in the California 

current, which may result in reduced marine productivity and salmonid numbers off the coast 

of California (Mantua et al. 1997; Osgood 2008).  In addition, the plankton production fueled by 

coastal upwelling may become more variable than in the past, both in magnitude and timing.  

While the winds that drive upwelling are likely to increase in magnitude, greater ocean 

stratification may reduce their effect (Osgood 2008).  The strongest upwelling conditions may 

also occur later in the year (Diffenbaugh et al. 2003; Osgood 2008).   The length of the winter 

storm season may also affect coastal upwelling.  For example, if the storm season decreases in 

length, upwelling may start earlier and last longer (Osgood 2008).  

 

Weak early season upwelling can have serious consequences for the marine food web, affecting 

invertebrates, birds, and potentially other biota (Barth et al. 2007).   Weak upwelling results in 

low plankton production early in the spring, when salmonid smolts are entering the ocean.  

Plankton is the base of the food web off the California Coast, and low levels of plankton reduce 

food levels throughout the coastal environment.  Variations in coho salmon survival and 

growth in the ocean are similar to copepod (salmonid prey) biomass fluctuations, which are also 

linked to climate variations (Mackas et al. 2007).  Salmon smolts entering California coastal 

waters could be impacted by reduced foraging opportunities, which could lead to lower marine 

survival rates during the critical first months of their ocean rearing  phase (Osgood 2008).   

 

Ocean Warming 

Ocean warming has the potential to shift coho salmon ranges northward.  Warming of the 

atmosphere is anticipated to warm the surface layers of the oceans, leading to increased 

stratification.  Many species may move toward the Earth’s poles, seeking waters meeting 

temperature preferences (Osgood 2008; Cheung et al. 2009). Salmonid distribution in the ocean 

is defined by thermal limits and salmonids may move their range in response to changes in 
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temperatures and prey availability (Welch et al. 1998).  The precise magnitude of species 

response to ocean warming is unknown, although recent modeling suggests high latitude 

regions are likely to experience the most species invasions, while local extinctions may be the 

most common in the tropics; Southern Ocean, North Atlantic, the Northeast Pacific Coast, and 

enclosed seas (such as the Mediterranean) (Cheung et al. 2009).  

  

Ocean Circulation 

The California Current brings prey items for salmonids south along the coast.  This current, 

driven by the North Pacific subtropical gyre, starts near the northern tip of Vancouver Island, 

Canada, flows south near the coast of North America to southern Baja, Mexico (Osgood 2008).  

Coastal upwelling and the PDO influence both the strength of this current and the types of 

marine plankton it contains.  If upwelling is weakened by climate change, and the PDO tends 

toward a warm condition, the quantity and quality of salmonid food supplies brought south by 

the current could decrease (Osgood 2008).  However, if rising global temperatures increase the 

strength of coastal upwelling, cold water fish like salmonids may do well regardless of the PDO 

phase (Osgood 2008).    

 

Ocean Acidification 

Although impacts to coho salmon are difficult to predict, increases in ocean acidity are of 

concern because they may affect the ocean’s food web.  The increase in atmospheric CO2 is 

changing the acidity of the oceans (Feely 2004; Turley 2008; O’Donnell et al. 2009).  The world’s 

oceans absorb CO2 from the atmosphere, and rising levels of atmospheric CO2 are increasing the 

amount of CO2 in seawater (Feely 2004, Turley 2008).  Chemical reactions fueled by CO2 input 

are increasing ocean acidity at a rate matched only during ancient planet-wide extinction events 

(Sponberg 2007; Brewer and Barry 2008; Turley 2008).  Shelled organisms in the ocean (some 

species of phytoplankton and zooplankton, and snails, urchins, clams, etc.) are likely to have 

difficulty maintaining and even forming shell material as CO2 concentrations in the ocean 

increase (Feely 2004; The Royal Society 2005; Brewer and Barry 2008; O’Donnell et al. 2009).  

Under worst case scenarios, some shell forming organisms may experience serious impacts by 
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the end of this century (The Royal Society 2005; Sponberg 2007; Turley 2008).  In addition, 

increased CO2 in the oceans is likely to impact the growth, egg and larval development, nutrient 

generation, photosynthesis, and other physiological processes of a wide range of ocean life 

(Turley 2008; O’Donnell et al. 2009).  However, the magnitude and timing of these impacts on 

ocean ecosystems from these effects remains uncertain (Turley 2008). 

  

Impacts on Estuarine Environments 

Impacts to estuaries and lagoons from global climate change may have greater effects on CCC 

coho salmon in the northern portion of their range because coho salmon likely use northern 

estuaries for extended rearing.  CCC coho salmon in the southern portion of their range are less 

dependent on estuaries for rearing.  In southern lagoons, observations of coho salmon occurred 

in April and May (Smith 1990) suggesting these fish were smolts on their way to the ocean.  In 

the northern portion of their range, coho salmon were observed in Albion River estuary from 

late May through late September, suggesting that some or all of these fish may spend more time 

rearing in this estuary prior to smolting (Maahs 1998).  

 

Estuaries are likely to become increasingly vulnerable to eutrophication (excessive nutrient 

loading and subsequent depletion of oxygen) due to changes in precipitation and freshwater 

runoff patterns, temperatures, and sea level rise (Scavia et al. 2002).  These changes may affect 

water residence time, dilution, vertical stratification, water temperature ranges, and salinity.  

For example, salinities in San Francisco Bay have already increased because increasing air 

temperatures have led to earlier snow melt in the Sierra’s which reduces freshwater flows into 

Bay in spring.  If this trend continues or strengthens, salinities in San Francisco Bay during the 

dry season will increase, contributing additional stress to an already altered and highly 

degraded ecosystem (Scavia et al. 2002).   If these impacts occur elsewhere, the result may lead 

to  reduced food supplies for coho salmon  using estuaries for rearing before going to sea.    
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Scenarios for Recovery Planning 

As described above, climate change is likely to further degrade salmonid habitats. Scientists 

have developed scenarios, based on reasonable assumptions, using the most up to date 

scientific data available.  These scenarios describe how climate change may affect various 

aspects of the environment.  NMFS has relied mainly on the scenario analysis conducted by the 

California Environmental Protection Agency (CEPA 2006)6 to evaluate the impacts of climate 

change on CCC coho salmon and their habitats.  CEPA considered three CO2 emissions 

scenarios:  high emissions, medium high emissions, and lower emissions.  Details of the 

environmental, population, economic, resource use, and technological assumptions behind each 

scenario are described in CEPA (2006).  These scenarios are among the most accurate 

predictions of how California will be affected by climate change.  It is important to note the 

scenarios are rough estimates of changes by the end of this century using parameters such as 

temperature, rainfall, vegetation, etc., at a statewide, West Coast, and eco-region scale.   

 

Modeling impacts of climate change is difficult to predict over shorter time scales (Cox and 

Stephenson 2007).  Nonetheless, progress is being made to improve predictions from climate 

change at shorter time intervals, at the global and regional scales (Smith and Murphy 2007).  

Unfortunately, predicting impacts on local geographic areas in short time frames, such as the 

first decade of CCC coho salmon recovery plan implementation, still remains difficult.  It is 

reasonable to assume, given California’s complex topography and variety of micro climates, 

variation within the CCC coho salmon ESU to impacts from climate change7 are likely.   

 

                                                      

6 These scenarios are being re-evaluated by CEPA based on current information (Franco 2008).  When new scenario information 

becomes available, NMFS will incorporate it into this recovery plan. 

7 For example, a recent article in the Santa Rosa Press Democrat reported the incidence of high temperatures in the Ukiah Valley 

(which includes a large portion of the mainstem Russian River) has decreased during the last 50 years, while the incidence of 

high temperatures in Napa Valley have increased (Porter 2008).  This information suggests climate change may actually be 

decreasing the incidence of high temperatures in the vicinity of the Russian River.  Due to the absence of peer reviewed climate 

change models linking global temperature changes to the Russian River watershed, we cannot project cooler temperatures in the 

Ukiah Valley forward into the future without developing a series of additional scenarios.  Ukiah Valley temperatures could 

continue to drop at the same rate or a different rate, stabilize at some point in time, stabilize and then begin to go up, etc.   
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NMFS considered potential effects of the three scenarios developed by the CEPA (2006) on 

future habitat conditions and threats for CCC coho salmon in the freshwater environment8.  We 

used many of the same habitat attributes, indicators, and threats used to evaluate the current 

and future condition of coho salmon habitat in this plan.  In many cases, scenarios available for 

California are not specific enough (i.e., watershed scaled) to project changes in habitat indicators 

or threats with reasonable certainty.  Nonetheless, we conclude from the information provided   

by CEPA (2006) there is a higher probability of greater negative changes to coho salmon habitat 

under higher CO2 emissions.   

 

In the following sections we have focused on attributes, indicators, and threats most likely 

affected by climate change.  For example, we considered how passage flows (all life stages), 

passage at river mouths (adults and smolts) and base flows are impacted by droughts as well as 

water diversions, impoundments and fire and fuel management.  For the threat of increased 

magnitude and frequency of storms and flooding, we considered how redd scour and pool 

habitat (shelter, LWD, etc.) would be affected.  Finally, we also considered the impacts on 

temperature, riparian species composition, size, and canopy cover, as well as disease, predation, 

and competition.  

 

Other habitat attributes were not addressed for CCC coho salmon because: (1) they can be easily 

linked to changes in the above attributes, or (2) we are unable to make reasonable predictions 

regarding the impacts of global climate change on these attributes, indicators, or threats based 

on the available information.  For example, agricultural practices, identified as a threat for some 

populations in the Recovery Plan, can result in sedimentation and turbidity.  It is unclear how 

farmers will respond to increased droughts and changes in vegetation growth patterns, and 

what resulting impacts on sediment and turbidity would be.  Farmers may respond by (1) 

                                                      

8 We focused on the freshwater environment because more is known about habitat conditions, underlying processes that create 

and maintain habitat, and there is more information about what may happen due to climate change.  Estuarine habitat was not 

analyzed because available information suggests CCC coho in the southern portion of their  range use these habitats for a 

relatively brief interval as transitional habitat between fresh and saltwater rather than for protracted rearing as do steelhead.   

However, more studies are necessary from estuaries in the northern portion of the range to determine if this trend holds true 

throughout the ESU or if it is in response to available habitat conditions.   
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stopping farming and allowing the land to go fallow, (2) stopping farming and selling the land 

for residential or urban development, (3) changing or modifying crop rotations, (4) building 

additional reservoirs and/or, (5) conserving water resources, etc.    

 

Emission and Temperature Scenario Overview 

The CEPA model consisted of three emissions scenarios; high (970 ppm), medium-high (830 

ppm), and low emissions (550 ppm) and predicted condition outcomes (CEPA 2006) (Figure 2). 

Modeling results indicated minor changes among the environmental impacts for different 

emissions scenarios between the years 2035-2050.  After 2050, the environmental impacts of high 

emissions scenarios begin to show marked differences from lower emissions scenarios (CEPA 

2006; IPCC 2007; Burgett 2009).  Emissions and air temperature scenarios from Lindley et al. 

(2007) were used to access the impacts.  The Lindley et al. (2007) modeling effort focused on 

Central Valley salmonids, however their analysis was illustrative because their temperature 

scenario maps included projections for coastal areas used by CCC coho salmon (Figure 3).  

NMFS recognizes such projections do not provide the level of precision and accuracy needed to 

determine when air temperatures may reach certain levels in particular streams.   



Appendix A: Marine and Climate  

Final CCC Coho Salmon ESU Recovery Plan (Volume III of III)  September 2012 

  37 

 

 

Figure 2:  Emission scenarios for California for a 30-year period, identifying increased threats associated with 

average annual air temperature (Lindley et al.  2007). 
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Figure 3:  Geographic areas in California experiencing a mean August air temperature >25 °C by year 2100 under 

different warming scenarios (Lindley et al.  2007). 

 

High Emissions Scenario 

Under the high emissions scenario, statewide average annual temperature is expected to rise 

between 4.4° and 5.8° C (Luers et al. 2006).  The temperature rise is predicted to cause loss of 

nearly all of the Sierra snowpack (the CCC ESU is not affected by Sierra snowpack), increase in 

droughts and heat waves, increased fire risk, and changes in vegetation.  The North Coast is 
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expected to experience similar effects, although the model appears to differ regarding the 

incidence of large storms. 

Droughts 

Natural climate variations such as droughts can dramatically affect habitat conditions for CCC 

coho salmon.   In the high emission scenario, model output from droughts in California, show 

2.5 times more critically dry years are possible than have occurred over the recent period (Luers 

et al. 2006).  On the North Coast, various modeling efforts have produced varying results for 

rainfall patterns. Variations in rainfall patterns may produce various effects on CCC coho 

salmon and their habitat.  Nonetheless, due to the uncertainties associated with rainfall on the 

North Coast, NMFS assumed a “worst case” reduction in precipitation similar to the statewide 

prediction (i.e., a 2.5 increase in the number of critically dry years).  Based on the overall threats 

ratings for droughts, and water diversions and impoundments outlined in the plan, it is 

reasonable to assume increases in the level of droughts will dramatically reduce total available 

freshwater habitat and alter the remaining habitat.   

 

 Reductions in freshwater habitat are expected to reduce freshwater survival for CCC coho 

across their range. The greatest impacts are expected to occur in the Coastal and Santa Cruz 

Mountains Diversity Strata, where droughts are rated as very high threats in many of the 

targeted watersheds with focus populations.  In these diversity strata, NMFS anticipates severe 

reductions or elimination of summer rearing habitat due to limited or depleted summer base 

flows, leading to increased instream temperatures or dewatering.  Not only are CCC coho 

salmon affected during baseflow conditions under this scenario, but migration flows for adults 

are expected to be severely curtailed, delayed, and/or absent in some years.  Adults may 

experience increased energetic costs during migration because of low flow impediments that 

are more prevalent during drought than normal water years.  NMFS anticipates the greatest 

negative impacts will be during smolt outmigration because spring flows will decline sooner 

under drought conditions, reducing migration opportunities.  In Northern Coastal watersheds, 

NMFS expects, under this scenario impacts from increased droughts  would be less severe, 
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although some watersheds will exhibit large reductions in the availability of summer rearing 

habitat due to lack of stream flows.   

 

Key habitat attributes at risk from climate effects were also analyzed.  The current condition 

indicators most likely to worsen due to climate change for each watershed are discussed below.  

NMFS assumed vulnerability of individual CCC coho salmon populations to increased drought 

frequency mostly relates to the current condition of specific habitat indicators.  For example, 

San Lorenzo River, Gazos Creek, Pescadero Creeks, Russian River, Gualala River, and Navarro 

Rivers are likely to be the most vulnerable to reduced adult passage flows due to drought 

conditions under any emissions scenario.   

 

Fires 

Increases in fire frequency or areas affected by fire were not modeled by CEPA (2006) for this 

scenario; however, the prevalence of fire is expected to increase under higher emission 

scenarios. NMFS assumes fire frequency and areas affected will be greater than the modeled 

results for the medium-high emissions scenario described below.  Impacts from increased fires 

are likely to include additional sedimentation to streams. Sedimentation may fill in pools in 

some areas, decreasing or eliminating the value of in stream restoration efforts to increase the 

amount of complex habitats available for salmonids.   

 

Storms and Flooding 

A worse-case high emissions scenario was assumed which predicts storms and flooding will 

dramatically increase during the winter months.  Increased frequency and magnitude of flows 

from storms and flooding are likely to increase redd scour and may affect the quantity and 

quality of spawning gravels, and the amount and quality of pool habitat in many watersheds.  

Winter rearing populations, without access to velocity refugia, are vulnerable due to increases 

in flood flows. 
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In addition, the compounding effects of roads are also a high threat for all targeted populations 

in the ESU.  Therefore, increased magnitudes and frequency of storm and flood events are likely 

to cause greater sediment output and turbidity due to existing roads.  Consequently, these 

heightened events will overwhelm the drainage capacity of many road crossings, especially 

under the high emission scenario.  Populations most vulnerable to these impacts include the 

Russian River and San Lorenzo River.  Based on the information in the plan, coho populations 

in the Santa Cruz Mountains Diversity Stratum are the most vulnerable to storms and flooding 

events. 

 

Temperature 

Fish, including salmonids, are sensitive to water temperature changes.  Previous sections of this 

plan explain coho salmon temperature requirements how current stream temperature 

conditions in the ESU were evaluated.  NMFS used, in part, the current condition ratings for 

temperature to identify populations most susceptible to increases in water temperatures due to 

climate change.  Under the high emissions scenario, a 4.4° C to 5.8° C warming of statewide 

average annual air temperature was assumed.  Figure 4 from Lindley et al. (2007) shows areas 

that may experience August mean air temperature over 25° C.  These higher air temperatures 

are likely to cause an increase in water stream temperatures, unless other factors, such as 

adequate quantities of cold groundwater input are present.  Figure 4 also illustrates where CCC 

coho salmon may be vulnerable to air temperature increases. According to this map, the interior 

watershed areas used by the Navarro River, Big River, Garcia River, Gualala River, and Russian 

River populations may experience high air and water temperatures that dramatically reduce the 

amount of stream habitat available to coho juveniles during the summers.  This impact appears 

most pronounced in the Russian River, where most of the watershed, except for tributaries near 

the coast, may experience high temperatures.  However, and as noted above, the Ukiah Valley 

(which contains much of the interior Russian River watershed) currently appears to be cooling, 

which adds to the degree of uncertainty regarding the impacts of the high temperature scenario 

for the coast of California. 
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Figure 4:  Approximate location of mean August air temperatures greater than 25°C in relation to coho 

salmon focus populations, under a 5o C warming scenario (modified from (Lindley et al. 2007).   
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Riparian Species Composition, Size, and Canopy Cover 

Vegetation near streams provides shade for cooler water temperatures, bank stability, 

large woody debris to stream channels, and habitat for salmonids prey.  Climate change 

is likely to affect vegetation in California, favoring some vegetation types over others, 

based on potential changes to air temperatures and rainfall.  Scenarios developed for 

CEPA (2006) concerning vegetation did not include a high emissions scenario.  NMFS 

assumed changes in vegetative cover will be more pronounced than those described 

under the moderate high emissions scenario.   There is uncertainty regarding current 

information on potential changes in forest productivity.  Some studies indicate the 

potential for increased forest productivity, while others suggest a decline (CEPA 2006).  

Due to this uncertainty, scenarios for tree size and canopy cover are not included in this 

discussion9. 

 

Disease, Predation, and Competition 

CEPA (2006) scenarios did not include disease, predation, or competition information 

directly related to salmonids.  However, CEPA and others (Harvell et al. 2002) noted that 

increasing instream temperatures can allow pathogens to spread into areas where they 

are currently absent because temperature limits their range.  In some cases, increasing 

temperatures may limit or restrict diseases (Harvell et al. 2002).  However, increasing 

temperatures likely have a greater potential to increase the susceptibility of coho salmon 

to disease (coho salmon prefer cooler water temperatures).  Given the potential for 

increasing droughts, disease outbreaks will likely increase if coho salmon are crowded 

together in areas of low stream flow and higher water temperatures.   

 

                                                      

9Linking tree productivity scenarios to changes in instream habitat will be difficult in this and other scenario exercises.  

For example, if forest productivity decreases, LWD sizes might decline over time.  However, droughts and higher 

temperatures are likely to raise vulnerability to pests and pathogens, which could increase tree death and thus the 

contribution of LWD to streams.   
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Moderate High Emissions Scenario 

Under the moderate-high emissions scenario, statewide average annual temperature is 

expected to rise between 3.1° C and 4.4° C (Luers et al. 2006).  Statewide, impacts to 

California’s climate are similar to the high emission scenarios and include loss of most of 

the Sierra snowpack, increase in droughts and heat waves, increase in fire risk, and 

changes in vegetation.   

 

Droughts 

Statewide, there is a 2-2.5 times greater probability of a critical dry year during the 

medium-high emission scenario (Luers et al. 2006). Impacts to CCC coho salmon and 

their freshwater habitat are likely to be similar to those described in the high emissions 

scenario. 

 

Fires 

Fires are also expected to increase under this scenario.  The model predicts an overall 

55% increase in the risk of large fires in California (Luers et al. 2006).  In particular, 

Northern California modeling results predict an overall 90% increased risk of fires 

(Westerling and Bryant 2006).  By the end of the century the risk of fire occurrences will 

likely increase, even in some coastal areas that currently experience fog and cool 

temperatures in the summers (Westerling and Bryant 2006). Similar to the high emission 

scenario, impacts from increased fires are likely to include additional sedimentation in 

streams potentially decreasing or eliminating the amount of complex habitat for coho 

salmon.   

 

Storms and Flooding 

Scenarios for increased magnitudes and frequencies for storm and flood events were not 

modeled for Northern California.  A worse-case moderate-high emissions scenario was 

assumed where storms and flooding dramatically increase during the winter months.  

Impacts under this scenario are likely similar to those expected for the high emissions 
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scenario, although the magnitude and frequency of storm flows may be less.  Similar to 

the high-emission scenarios, coho populations in the Santa Cruz Mountains Diversity 

Stratum are the most vulnerable to storms and flooding events. 

 

Temperature 

As with the high emissions scenario, NMFS used the 5° C warming-map from Lindley et 

al. (2007), which shows areas that may experience August mean air temperature over 25° 

C (Figure 4) as a predictor of potential change in the ESU.  The higher air temperatures 

are likely to increase stream temperatures (unless other factors, such as cold 

groundwater input, are present).  Impacts to coho salmon and their freshwater habitats 

are likely to be similar, while somewhat less than, the impacts described under the high 

emissions scenario.   

 

Riparian Species Composition, Size, and Canopy Cover 

Climate change will likely affect vegetation patterns in California by favoring some 

vegetation types over others based on potential changes to air temperatures and rainfall.  

Based on the maps produced by CEPA for the California moderate high emissions 

scenario for tree species distribution (Lenihan et al. 2006), NMFS inferred mixed 

evergreen forest (Douglas-fir, tanoak, madrone, oak) may expand toward the coast and 

into areas currently dominated by evergreen conifer forest (coastal redwoods) by the 

end of the century.  Increases in tanoak, a hardwood, in coastal riparian areas could 

ultimately decrease the value of future LWD (although this would likely take a 

considerable time to actually occur due to the longevity of redwood).  Streams in 

riparian forests composed of hardwood species generally have less LWD volume than 

streams in conifer riparian forests (Gurnell 2003).  LWD is an important component of 

pool formation in some streams, and large decreases in conifer LWD could reduce the 

number, depths, and longevity of pools in IP-km, ultimately reducing the amount of 

high quality rearing and over wintering habitat available for CCC coho salmon. 



Appendix A: Marine and Climate  

Final CCC Coho Salmon ESU Recovery Plan (Volume III of III)  September 2012 

  46 

 

Disease, Predation, and Competition 

Similar to the high emission scenario, CEPA scenarios do not include disease, predation, 

or competition information regarding salmonids. NMFS assumed increasing 

temperatures may increase exposure risk, given the potential for increasing frequency of 

droughts.  If drought frequency increases, disease outbreaks will likely increase if coho 

salmon are crowded together in smaller amounts of wetted habitats as well as increased 

competition for food and rearing resources.  Potential impacts are expected to be 

somewhat less in severity for the moderate high emissions scenario than in the high 

emissions scenario. 

 

Low Emissions Scenario 

Under a low emissions scenario, statewide average annual temperature is expected to 

rise between 1.7° C and 3.0° C (Luers et al. 2006). Statewide, one-third to one-half of the 

Sierra snowpack is expected to be lost (although this will have little impact to the CCC 

ESU); there will be an increase in droughts and heat waves, increase fire risk, and 

changes in vegetation type and composition.  Changes for the North Coast are likely to 

be similar, although model results appear to differ regarding the incidence of large 

storms, as described above in the high scenario. 

 

Droughts 

Statewide the probability of critically dry years increases 1-1.5 times for the low 

emission scenario (Luers et al. 2006).  Due to the uncertainties associated with rainfall on 

the North Coast, a worse-case reduction in precipitation (similar to the statewide 

prediction) was assumed; yielding a 1-1.5 increase in the number of critically dry years.  

In comparison to the high and medium emission scenarios, CCC coho salmon and their 

freshwater habitat are less likely to be adversely affected.   Impacts will most likely affect 

the Coastal and Santa Cruz Mountains Diversity Strata under this scenario 
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Fires   

Fires are expected to increase under this scenario with an overall 10% to 35% increase in 

the risk of large fires in California (Luers et al. 2006).  For northern California, modeling 

results predicted an overall 40% increase in fire risk (Westerling and Bryant 2006).  By 

the end of the century, based upon the fire risk maps provided by Westerling and Bryant 

(2006), the risk of fire near the coast may increase, although the magnitude of the 

increase appears limited.  Impacts from increased fires are likely to include additional 

sedimentation in streams and increased turbidity.  Sedimentation may fill in pools in 

some areas, decreasing or eliminating the value of instream restoration efforts to 

increase the amount of complex habitats available.   

 

Storms and Flooding 

Scenarios for increases in storms and flooding are not available because variation in 

model results for climate change impacts on precipitation in Northern California.  For 

storms and flooding, a worse case lower emissions scenario was assumed where storms 

and flooding increase during the winter months.  Based on threat rankings, Santa Cruz 

Mountain Diversity Stratum coho populations are likely, the most vulnerable to storms 

and flooding.  Impacts under this scenario are likely to be less than those expected for 

the moderate high and medium emissions scenarios described above.   

 

Temperature 

Current condition ratings for temperature were used to identify populations susceptible 

to increases in water temperatures from climate change.  Under low emissions scenario, 

a 1.7° to 3.0° C warming of statewide average annual air temperature was assumed 

likely to occur.  The 2° C warming-map from Lindley et al. (2007), was used to predict 

potential changes to the CCC ESU (Figure 4).  According to results presented on the 

map, the interior Russian River and Navarro River are the areas affected by air 
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temperature increases.  However, fewer subbasins within these watersheds are more 

affected than in the other emission scenarios.   

 

Riparian Species Composition, Size, and Canopy cover 

See discussion in moderate high emissions scenario.  These potential impacts are likely 

to be less than those in the moderate high emissions and high emissions scenarios. 

 

Disease, Predation, and Competition 

See discussion in the moderate high emissions scenario.  These potential impacts are 

likely to be less than those in the moderate high emissions and high emissions scenarios. 

 

Most Vulnerable Populations 

Using the best available scientific data and information compiled in the Plan, NMFS 

found the following populations to be a high or very high risk of threat from climate:  

Pudding, Big River, Navarro River, Russian River, Lagunitas Creek, San Lorenzo River 

and Soquel Creek.   

 

Recovery Planning and Climate Change 

The effects of climate variability on Pacific salmon abundance are uncertain because 

historical records are short and abundance estimates are complicated by commercial 

harvesting and habitat alternation. We cannot currently predict the precise magnitude, 

timing, and location of impacts from climate change on coho salmon populations or 

their habitat.  Some CCC coho salmon populations are likely to be more vulnerable than 

others, and these populations are identified in the plan.  Monitoring and evaluating 

changes across the CCC coho salmon ESU on a long-term scale is critical for devising 

better scenarios and adjusting recovery strategies. 
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Survival and recovery of CCC coho salmon under any climate change scenario depends 

on securing and expanding viable CCC coho salmon populations.  Viable populations 

have a better chance of surviving loss of habitat, and can likely persist in the advent of 

range contraction, if habitat conditions in inland and at the southern extent of the range 

become more tenuous.  Major differences in environmental impacts of high, medium, 

and low emissions scenarios may not become evident until about mid-century.   

 

A number of federal, state and local adaptive/action plans have been developed for the 

U.S. and the State of California.  For example, in 2010, NOAA released the Adapting to 

Climate Change: A Planning Guide for State Coastal Managers document and sea level 

inundation toolkit, to help U.S. state and territorial (states) coastal managers develop 

and implement adaptation plans to reduce the risks associated with climate change 

impacts (NOAA 2010).  In 2008, under the Executive Order S-13-08 signed by the 

Governor of California, the State of California began to develop state-wide and local 

climate adaption/action plans that focus on topics such as: the economy, 

ecosystem/natural resources, human health, infrastructure, society and water resources. 

In 2009, the California Natural Resources Agency released the California Climate 

Adaptation Strategy document.  Many of the issues discussed in this document address 

the impacts of sea level rise, drought, flooding, air temperature and precipitation on the 

topics mentioned above.  In the NCCC Recovery Domain, climate adaption/action plans 

have been developed for the San Francisco Bay (SPUR 2011); the City of San Rafael (City 

of San Rafael Climate Change Action Plan (City of San Rafael 2009)); and the City of 

Berkeley (Berkeley Climate Action Plan (City of Berkeley 2009)).  At present, the state of 

California is the only state in U.S. to develop a cap-and-trade program on GHGs. The 

program is a central element of California's Global Warming Solutions Act (AB 32) and 

covers major sources of GHG emissions in the State such as refineries, power plants, 

industrial facilities, and transportation fuels. Implementation of the cap-and-trade 

http://www.arb.ca.gov/cc/ab32/ab32.htm
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program will be an essential component in minimizing the impacts describe above to 

CCC coho salmon ESU.  

 

In the future, climate change will likely surpass habitat loss as the primary threat to the 

conservation of most salmonid species (Thomas et al. 2004).  Climate change will 

continue to pose a continued threat to salmonids in the foreseeable future throughout 

the Pacific Northwest (Battin et al. 2007).  Overall, climate change is believed to represent 

a growing threat to CCC coho ESU. Understanding and successfully adapting to these 

changes will require additional knowledge of the likely consequences and the types of 

actions required.  

 

Recommended Actions and Options for Adaptive Management:  

Information from federal, state, private, and public entities was used to compile specific 

recommended actions and options for management for climate change which include 

but are not limited to: 

 2010 Interagency Climate Change Adaptation Task Force Progress Report to the 

President; 

 2010 National Park Service's Climate Change Response Strategy; 

 2010 U.S. Fish and Wildlife Service's Strategic Plan for Responding to Accelerating 

Climate Change; 

 2009 U.S. Global Climate Research Program Change (USGCRP) Climate Change 

Impacts in the United States Report; 

 2008 U.S. Forest Service's Strategic Framework for Responding to Climate Change; 

and 

 2007 IPCC Fourth Assessment Report Summary. 

  

http://www.whitehouse.gov/sites/default/files/microsites/ceq/Interagency-Climate-Change-Adaptation-Progress-Report.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ceq/Interagency-Climate-Change-Adaptation-Progress-Report.pdf
http://www.nature.nps.gov/climatechange/docs/NPS_CCRS.pdf
http://www.fws.gov/home/climatechange/pdf/CCStrategicPlan.pdf
http://www.fws.gov/home/climatechange/pdf/CCStrategicPlan.pdf
http://downloads.globalchange.gov/usimpacts/pdfs/climate-impacts-report.pdf
http://downloads.globalchange.gov/usimpacts/pdfs/climate-impacts-report.pdf
http://www.fs.fed.us/climatechange/documents/strategic-framework-climate-change-1-0.pdf
http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf
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Although options for resource managers to minimize the harm to aquatic and terrestrial 

resources from climate change are limited, there are several management options that 

can help protect and recovery coho salmon. 

 

Stewardship and Outreach  

 Actively engage stakeholders and the public regarding climate change impacts to  

coho salmon recovery.    The website http://www.ipcc.ch summarizes of climate 

change issues for North America and the suite of actions from the IPCC to be 

considered for ecosystem and human health. 

 Work with staff, and other entities to encourage and incorporate climate change 

vulnerability assessments and climate change scenarios in consultations, 

permitting, and restoration projects to access the impacts on coho salmon. 

 

Research and Monitoring 

 Expand research and monitoring to improve climate change predictions and 

effects to salmon recovery.  For example, investing in marine climate change 

research will facilitate improved decision making by resource managers and 

society.  Improved predictions will help ensure the future utility, protection, and 

enjoyment of coastal and marine ecosystems.  See Appendix K for specific 

research needs and strategies.   

 Use existing models, tools and techniques (i.e., Regional Climate System Model, 

Sea level Rise and Coastal Flooding Impacts Viewer)  to improve accuracy of 

ecological forecasting in order to anticipate and offset impacts  related to global 

human population growth and development, to salmon viability and habitat. 

 Support development and application of GCMs and RCMs to support research 

and monitoring activities listed in the recovery plan.   

http://www.ipcc.ch/
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 Model stream flows (ranging from critical dry to wet years) to identify, prioritize, 

and protect areas of cool water input vulnerable to ongoing and future increases 

in diversion.  

 

Protection, Minimization, Mitigation and Restoration 

 Minimize increases in water temperatures by maintaining well-shaded riparian 

areas. 

 Ensure road drainages are disconnected from the stream network to reduce the 

effects of discharge peaks during intense rain events. 

 Protect springs and large groundwater seeps from development and water 

diversion.  Subterranean water sources that provide cool water inflow will be 

increasing important in watersheds with ongoing water diversions. 

 Ensure fish have access to seasonal habitats such as off-channel wintering areas and 

summer thermal refugia. 

 Promote and maintain forest stand structures promoting fog drip.   

 Promote and support policies that (a) explicitly maintain instream flow by limiting 

water withdrawals, (b) enhance flood-plain connectivity by opening historically 

flooded areas where possible, (c) remove anthropogenic barriers for fish passage, 

and (d) expand riparian forests to increase habitat resilience. 

 Encourage and increase voluntary carbon accounting in the forest sector through 

certification with the California Climate Action Registry and their Forest Protocols.  

 Promote land management practices that enhance carbon storage.  For example, 

promote biological carbon sequestration best management practices (BMPs).  Focus 

on forestlands to store carbon and reduce greenhouse gasses (See also Logging and 

Wood Harvesting Strategies) by working with appropriate entities to prevent forest 

loss, conserve and manage for older forest, and restore forests where converted to 

other land uses. 
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